Characterization of the ligandin site of maize glutathione S-transferase I.

نویسندگان

  • Irine A Axarli
  • Daniel J Rigden
  • Nikolaos E Labrou
چکیده

Cytosolic GSTs (glutathione S-transferases) are a major reserve of high-capacity binding proteins and exhibit ligand-binding properties for a large variety of compounds. In the present study, the binding of two non-substrate anthraquinone dyes VBAR (Vilmafix Blue A-R) and CB3GA (Cibacron Blue 3GA) to maize (Zea mays) GST I was investigated. The results showed that the enzyme was specifically and irreversible inactivated by VBAR with a K(d) of 35.5+/-2.2 microM and a k(3) of 0.47 min(-1). Proteolytic cleavage of the VBAR-modified enzyme and subsequent separation of peptides gave only one modified peptide. Sequencing of the modified peptide revealed the target site of VBAR reaction to be Lys(41). CB3GA binds reversibly to GST I and behaves as a competitive inhibitor towards CDNB (1-chloro-2,4-dinitrobenzene) and glutathione. CB3GA binding to GST I is accompanied by a characteristic spectral change in the absorption at positive maximum (670 nm) which exhibited a hyperbolic dependence on dye concentration with a K(d) of 12.1+/-0.5 microM. Site-directed mutagenesis of selected residues (Trp(12), Phe(35), Lys(41), Asn(49), Gln(53), Ser(67) and Ile(118)) was employed, and the mutated enzymes were assessed for CB3GA binding. These results, together with molecular-modelling studies, established that the ligandin-binding site of GST I is located mainly in the hydrophobic binding site. The ability of VBAR to specifically inactivate GST I was exploited further to demonstrate the specific binding of several plant hormones and flavonoids to GST I. The inactivation of other GST isoenzymes by VBAR was also investigated, and it was concluded that VBAR may have wide applicability as an affinity label for probing structure-function relationships of GST isoenzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of a Monoclonal Antibody to Ligandin1

A monoclonal antibody has been produced in the mouse system using purified rat liver ligandin as antigen. The antibody is of the immunoglobulin M class and appears to be specific for the Ya subunit of lowest molecular weight which comprises the isoenzymes of glutathione S-transferases in rat liver. Of the series of glutathione S-transferases, the antibody cross-reacted with purified ligandin (Y...

متن کامل

Urinary ligandin and glutathione-S-transferase in gentamicin-induced nephrotoxicity in the rat.

1. Eight rats developed detectable glutathione-S-transferase activity in their urine after three daily injections of toxic doses of gentamicin. 2. Seven of the eight rats had immunodetectable ligandin in their urine at this time. 3. The level of enzyme activity correlated well with the degree of elevation of serum creatinine. 4. This confirms ligandinuria and urinary glutathione-S-transferase a...

متن کامل

Identification of two lithocholic acid-binding proteins. Separation of ligandin from glutathione S-transferase B.

1. Two lithocholic acid-binding proteins in rat liver cytosol, previously shown to have glutathione S-transferase activity, were resolved by CM-Sephadex chromatography. 2. Phenobarbitone administration resulted in induction of both binding proteins. 3. The two proteins had distinct subunit compositions indicating that they are dimers with mol.wts. 44 000 and 47 000. 4. The two lithocholic acid-...

متن کامل

Identity of ligandin in rat testis and liver.

1. One of the main problems in the field of multifunctional proteins such as ligandin is the possibility that multiple forms and isoproteins may exist. Because liver ligandin [GSH (reduced glutathione) S-transferase B] consists of equal amounts of Ya (22 000 Da) and Yc (25 000 Da) subunits, and testis ligandin, prepared by the standard technique of anion-exchange and molecular-exclusion chromat...

متن کامل

Structural Insights into Omega-Class Glutathione Transferases: A Snapshot of Enzyme Reduction and Identification of a Non-Catalytic Ligandin Site

Glutathione transferases (GSTs) are dimeric enzymes containing one active-site per monomer. The omega-class GSTs (hGSTO1-1 and hGSTO2-2 in humans) are homodimeric and carry out a range of reactions including the glutathione-dependant reduction of a range of compounds and the reduction of S-(phenacyl)glutathiones to acetophenones. Both types of reaction result in the formation of a mixed-disulfi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 382 Pt 3  شماره 

صفحات  -

تاریخ انتشار 2004